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Fundamentals Physics

Eleventh Edition

Halliday

Chapter 11

Rolling, Torque, and Angular Momentum

11-1 Rolling as Translation and Rotation 
Combined (1 of 6)

Learning Objectives

11.01 Identify that smooth rolling can be considered as a 
combination of pure translation and pure rotation

11.02 Apply the relationship between the center-of-mass 
speed and the angular speed of a body in smooth rolling

Figure 11-2
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11-1 Rolling as Translation and Rotation 
Combined (2 of 6)
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11-1 Rolling as Translation and Rotation 
Combined (3 of 6)

• We consider only objects that roll smoothly (no slip)

• The center of mass (com) of the object moves in a straight 
line parallel to the surface

• The object rotates around the com as it moves

• The rotational motion is defined by:

𝑆 = 𝜃𝑅, Equation (11-1)

𝑣com = 𝜔𝑅 Equation (11-2)
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Figure 11-3
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11-1 Rolling as Translation and Rotation 
Combined (4 of 6)

Figure 11-4

• The figure shows how the velocities of translation and 
rotation combine at different points on the wheel
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11-1 Rolling as Translation and Rotation 
Combined (5 of 6)

• The figure shows how the velocities of translation and 
rotation combine at different points on the wheel
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11-1 Rolling as Translation and Rotation 
Combined (6 of 6)

Checkpoint 1

The roar wheel on a clown's bicycle has twice the radius 
of the from wheel, (a) When the bicycle is moving, is the 
linear speed at the very top of the rear wheel greater than, 
less than, or the same as that of the very top of the front 
wheel? (b) Is the angular speed of the rear wheel greater 
than, less than, or the same as that of the front wheel?

Answer:

(a) the same

(b) less than
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11-2 Forces and Kinetic Energy of 
Rolling (1 of 12)

Learning Objectives

11.03  Calculate the kinetic energy of a body in smooth rolling 
as the sum of the translational kinetic energy of the 
center of mass and the rotational kinetic energy around 
the center of mass.

11.04  Apply the relationship between the work done on a 
smoothly rolling object and its kinetic energy change.

11.05  For smooth rolling (and thus no sliding), conserve 
mechanical energy to relate initial energy values to the 
values at a later point.
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11-2 Forces and Kinetic Energy of 
Rolling (2 of 12)

11.06  Draw a free-body diagram of an accelerating body that 
is smoothly rolling on a horizontal surface or up or 
down on a ramp.

11.07  Apply the relationship between the center-of-mass 
acceleration and the angular acceleration.

11.08  For smooth rolling up or down a ramp, apply the 
relationship between the object’s acceleration, its 
rotational inertia, and the angle of the ramp.
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11-2 Forces and Kinetic Energy of 
Rolling (3 of 12)

• Combine translational and rotational kinetic energy:

K =
1

2
Icom𝜔2 +

1

2
𝑀𝑣com

2 . Equation (11-5)

A rolling object has two types of kinetic energy: a rotational

kinetic energy 
1

2
Icom𝜔2 due to its rotation about its center of

mass and a translational kinetic energy 
1

2
𝑀𝑣com

2

due to translation of its center of mass.

• If a wheel accelerates, 

its angular speed changes

• A force must act to prevent slip

10Copyright ©2018 John Wiley & Sons, Inc

Figure 11-7

𝑎com = 𝛼𝑅 Equation (11-6)
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11-2 Forces and Kinetic Energy of 
Rolling (4 of 12)

• For smooth rolling 
down a ramp:

1. The gravitational 
force is vertically 
down

2. The normal force is 
perpendicular to the 
ramp

3. The force of friction 
points up the slope

11Copyright ©2018 John Wiley & Sons, Inc

• If slip occurs, then the motion is not smooth rolling!

Figure 11-8

11-2 Forces and Kinetic Energy of 
Rolling (5 of 12)

• The only force that 
creates a torque on the 
wheel is the (static) 
frictional force

𝑓𝑠𝑅 = 𝐼com𝛼

• The angular 
acceleration 𝛼 > 0 
(counterclockwise), thus 

we substitute −
𝑎com,𝑥

𝑅

12Copyright ©2018 John Wiley & Sons, Inc

• Write the Newton’s transl. equation of motion along the ramp
𝑓𝑠 −𝑀𝑔 sin 𝜃 = 𝑀𝑎com

Figure 11-8
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11-2 Forces and Kinetic Energy of 
Rolling (6 of 12)

• Equate this with the 
translational equation
𝑓𝑠 −𝑀𝑔 sin 𝜃

= 𝑀𝑎com

13Copyright ©2018 John Wiley & Sons, Inc

• Substituting 𝛼 with its 𝑎com,𝑥 counterpart, yield 

𝑓𝑠 =
𝐼com𝛼

𝑅
= −𝐼com

𝑎com,𝑥

𝑅2

Figure 11-8

11-2 Forces and Kinetic Energy of 
Rolling (7 of 12)

• We can use this equation to find the acceleration of such 
a body

𝑎com, 𝑥 = −
𝑔 sin 𝜃

1 +
𝐼com
𝑀𝑅2

. Equation (11-10)

• Note that the frictional force produces the rotation

• Without friction, the object will simply slide

14Copyright ©2018 John Wiley & Sons, Inc
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11-2 Forces and Kinetic Energy of 
Rolling (8 of 12)

Checkpoint 1

Disks A and B are identical and roll across a floor with equal 
speeds. Then disk A rolls up an incline, reaching a maximum 
height h, and disk B moves up an incline that is identical 
except that it is frictionless. Is the; maximum height reached 
by disk B greater than, less than, or equal to h?

Answer:

The maximum height reached by B is less than that reached by A. 
For A, all the kinetic energy becomes potential energy at h. Since 
the ramp is frictionless for B, all of the rotational K stays rotational, 
and only the translational kinetic energy becomes potential energy 
at its maximum height.
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11-2 Forces and Kinetic Energy of 
Rolling (9 of 12)
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11-2 Forces and Kinetic Energy of 
Rolling (10 of 12)
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11-2 Forces and Kinetic Energy of 
Rolling (11 of 12)
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11-2 Forces and Kinetic Energy of 
Rolling (12 of 12)
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11-3 The Yo-Yo (1 of 3)

Learning Objectives

11.09  Draw a free-body diagram of a yo-yo moving up or 
down its string.

11.10  Identify that a yo-yo is effectively an object that rolls 
smoothly up or down a ramp with an incline angle of 
90°.

11.11  For a yo-yo moving up or down its string, apply the 
relationship between the yo-yo's acceleration and its 
rotational inertia.

11.12  Determine the tension in a yo-yo's string as the yo-yo 
moves up or down the string.

20Copyright ©2018 John Wiley & Sons, Inc
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11-3 The Yo-Yo (2 of 3)

• As a yo-yo moves down a string, it loses 
potential energy mgh but gains 
rotational and translational kinetic 
energy

• To find the linear acceleration of a yo-yo 
accelerating down its string:

1. Rolls down a “ramp” of angle 90°

2. Rolls on an axle instead of its outer 
surface

3. Slowed by tension T rather than 
friction Figure 11-9

21Copyright ©2018 John Wiley & Sons, Inc

11-3 The Yo-Yo (3 of 3)

• Replacing the values in 11-10 leads us to:

𝑎com = −
𝑔

1 +
𝐼com
𝑀𝑅0

2

, Equation (11-13)

Example Calculate the acceleration of the yo-yo

• 𝑀 = 150 grams, 𝑅0 = 3 mm, 𝐼com =
𝑀𝑟2

2
= 3 × 10−5 kg m2

• Therefore

𝑎com = −
9.8

m
s2

1 +
3 × 10−5

0.15 × 0.0032

= −0.4
m

s2
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11-4 Torque Revisited (1 of 7)

Learning Objectives

11.13  Identify that torque is a vector quantity.

11.14  Identify that the point about which a torque is calculated 
must always be specified.

11.15  Calculate the torque due to a force on a particle by 
taking the cross product of the particle's position vector 
and the force vector, in either unit-vector notation or 
magnitude-angle notation.

11.16  Use the right-hand rule for cross products to find the 
direction of a torque vector.

23Copyright ©2018 John Wiley & Sons, Inc

11-4 Torque Revisited (2 of 7)

• Previously, torque was defined only for a rotating body and 
a fixed axis

• Now we redefine it for an individual particle that moves 
along any path relative to a fixed point

• The path need not be a circle; torque is now a vector

• Direction determined with right-hand-rule

Figure 11-10
24Copyright ©2018 John Wiley & Sons, Inc
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11-4 Torque Revisited (3 of 7)

• The general equation for torque is:

Ԧ𝜏 = Ԧ𝑟 × Ԧ𝐹 Equation (11-14)

• We can also write the magnitude as:

𝜏 = 𝑟𝐹 sin𝜙 , Equation (11-15)

• Or, using the perpendicular component of force or the 
moment arm of F:

𝜏 = 𝑟𝐹⊥, Equation (11-16)

𝜏 = 𝑟⊥𝐹, Equation (11-17)

25Copyright ©2018 John Wiley & Sons, Inc

11-4 Torque Revisited (4 of 7)

Checkpoint 3

The position vector r of a particle points along the

positive direction of a z axis. If the torque on the particle is (a) 
zero, (b) in; the negative direction of x, and (c) in the negative 
direction of y, in what direction is the force causing the 
torque?

Answer:

(a) along the z direction

(b) along the +y direction

(c) along the +x direction

26Copyright ©2018 John Wiley & Sons, Inc
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11-4 Torque Revisited (5 of 7)

Example Calculating net torque:

27Copyright ©2018 John Wiley & Sons, Inc

11-4 Torque Revisited (6 of 7)

Example Calculating net torque: Figure 11-11

28Copyright ©2018 John Wiley & Sons, Inc
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11-4 Torque Revisited (7 of 7)

Example Calculating net torque:

29Copyright ©2018 John Wiley & Sons, Inc

11-5 Angular Momentum (1 of 6)

Learning Objectives

11.17  Identify that angular momentum is a vector quantity.

11.18  Identify that the fixed point about which an angular 
momentum is calculated must always be specified.

11.19  Calculate the angular momentum of a particle by taking 
the cross product of the particle's position vector and its 
momentum vector, in either unit-vector notation or 
magnitude-angle notation.

11.20  Use the right-hand rule for cross products to find the 
direction of an angular momentum vector.

30Copyright ©2018 John Wiley & Sons, Inc
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11-5 Angular Momentum 
(2 of 6)

• Here we investigate the angular 
counterpart to linear momentum

• We write:

ℓ = Ԧ𝑟 × Ԧ𝑝 = 𝑚 Ԧ𝑟 × Ԧ𝑣 Equation (11-18)

• Note that the particle need not rotate 
around O to have angular 
momentum around it

• The unit of angular momentum is
2m /s,kg or Js

31Copyright ©2018 John Wiley & Sons, Inc

Figure 11-12

11-5 Angular Momentum 
(2 of 6)

Equation (11-19)

• The unit of angular momentum is

32Copyright ©2018 John Wiley & Sons, Inc

Figure 11-12

• To find the direction of angular 
momentum, use the right-hand rule to 
relate r and v to the result

• To find the magnitude, use the equation 
for the magnitude of a cross product:

ℓ = 𝑟𝑚𝑣 sin𝜙,

ℓ = 𝑟𝑝⊥ = 𝑟𝑚𝑣⊥, Equation (11-20)

ℓ = 𝑟⊥𝑝 = 𝑟⊥𝑚𝑣, Equation (11-21)
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11-5 Angular Momentum (5 of 6)

• Angular momentum has meaning only with respect to a 
specified origin

• It is always perpendicular to the plane formed by the 
position and linear momentum vectors

33Copyright ©2018 John Wiley & Sons, Inc

11-5 Angular Momentum (5 of 6)

Checkpoint 4

In part a of the figure, particles 1 and 2 move around point O in circles 
with radii 2 m and 4 m. In part b, particles 3 and 4 travel along straight 
lines at perpendicular distances of 4 m and 2 m from point O. Particle 5 
moves directly away from O. All five particles have the same mass and 
the same constant speed, (a) Rank the particles according to the 
magnitudes of (heir angular momentum about point O, greatest first, (b) 
Which particles have negative angular momentum about point O?

34Copyright ©2018 John Wiley & Sons, Inc
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11-5 Angular Momentum (6 of 6)

Answer:

(a) 1 & 3, 2 & 4, 5

(b) 2 and 3 (assuming counterclockwise is positive)

35Copyright ©2018 John Wiley & Sons, Inc

11-6 Newton's Second Law in Angular 
Form (1 of 6)

Learning Objectives

11.21  Apply Newton's second law in angular form to 
relate the torque acting on a particle to the resulting 
rate of change of the particle's angular momentum, 
all relative to a specified point.

36Copyright ©2018 John Wiley & Sons, Inc
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11-6 Newton's Second Law in Angular 
Form (2 of 6)

• We rewrite Newton's second law as:

Ԧ𝜏net =
𝑑ℓ

𝑑𝑡
single particle . Equation (11-23)

• The torque and the angular momentum must be defined with 
respect to the same point (usually the origin)

The (vector) sum of all the torques acting on a particle is 
equal to the time rate of change of the angular momentum of 
that particle.

• Note the similarity to the linear form:

Ԧ𝐹net =
𝑑 Ԧ𝑝

𝑑𝑡
single particle Equation (11-22)

37Copyright ©2018 John Wiley & Sons, Inc

11-6 Newton's Second Law in Angular 
Form (3 of 6)

Checkpoint 5

The figure shows the position vector r of a particle at a certain
instant, and four choices for the direction of a force that is to 
accelerate the particle. All four choices lie in the xy plane. (a) Rank 
the choices according to the magnitude of the time rate of change

( )d
dt

they produce in the angular momentum of the particle about

point O, greatest first, (b) Which choice results in a negative rate of 
change about O?

Answer:

(a) F3, F1, F2 & F4

(b) F3 (assuming counter clockwise is 
positive)

38Copyright ©2018 John Wiley & Sons, Inc

37

38



10/10/2021

20

11-6 Newton's Second Law in Angular 
Form (4 of 6)
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11-6 Newton's Second Law in Angular 
Form (5 of 6)
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11-6 Newton's Second Law in Angular 
Form (6 of 6)

41Copyright ©2018 John Wiley & Sons, Inc

11-7 Angular Momentum of a Rigid 
Body (1 of 6)

Learning Objectives

11.22  For a system of particles, apply Newton's second law in 
angular form to relate the net torque acting on the system to 
the rate of the resulting change in the system's angular 
momentum.

11.23  Apply the relationship between the angular momentum of a 
rigid body rotating around a fixed axis and the body's 
rotational inertia and angular speed around that axis.

11.24  If two rigid bodies rotate about the same axis, calculate their 
total angular momentum.

42Copyright ©2018 John Wiley & Sons, Inc
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11-7 Angular Momentum of a Rigid 
Body (2 of 6)

• We sum the angular momenta of the particles to find the 
angular momentum of a system of particles:

𝐿 = ℓ1 + ℓ2 + ℓ3 +⋯+ ℓ𝑛 =

𝑖=1

𝑛

ℓ𝑖 . Equation (11-26)

• The rate of change of the net angular momentum is:

𝑑𝐿

𝑑𝑡
=

𝑖=1

𝑛

Ԧ𝜏net,𝑖 . Equation (11-28)

• In other words, the net torque is defined by this change:

Ԧ𝜏net =
𝑑𝐿

𝑑𝑡
system of particles , Equation (11-29)

43Copyright ©2018 John Wiley & Sons, Inc

11-7 Angular Momentum of a Rigid 
Body (3 of 6)

The net external torque Ԧ𝜏net acting on a system of particles is 
equal to the time rate of change of the system's total angular 

momentum 𝐿

44Copyright ©2018 John Wiley & Sons, Inc
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11-7 Angular Momentum of a Rigid 
Body (4 of 6)

• Note that the torque and angular momentum 
must be measured relative to the same origin

• If the center of mass is accelerating, then 
that origin must be the center of mass

• We can find the angular momentum of a 
rigid body as

𝐿𝑧 =

𝑖=1

𝑛

ℓ𝑖𝑧 =

𝑖=1

𝑛

Δ𝑚𝑖𝑣𝑖𝑟𝑖⊥

=

𝑖=1

𝑛

Δ𝑚𝑖 𝜔𝑟𝑖⊥ 𝑟𝑖⊥ = 𝜔 

𝑖=1

𝑛

Δ𝑚𝑖 𝑟𝑖⊥
2

Equation (11-30)

• The sum is the rotational inertia I of the body
45Copyright ©2018 John Wiley & Sons, Inc

11-7 Angular Momentum of a Rigid 
Body (5 of 6)

• Therefore, this simplifies to:

𝐿 = 𝐼𝜔 (rigid body, fixed axis). Equation (11-31)

Table 11-1 More Corresponding Variables and Relations for Translational and 
Rotational Motiona

Translational Translational Rotational Rotational

Force Torque

Linear momentum Angular momentum

Linear momentumb Angular momentumb

Linear momentumb Angular momentum c

Newton's second lawb Newton's second lawb

Conservation lawd Conservation lawd

F ( )r F = 

p ( )r p= 

( )ip p= ( )iL = 

( )comp M v= L I=

net

d p
F

dt
= net

d L

dt
 =

Copyright ©2018 John Wiley & Sons, Inc

a constantp = a constantL =

46
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11-7 Angular Momentum of a Rigid 
Body (6 of 6)

Checkpoint 6

In the figure, a disk, a hoop, and a solid sphere are made to spin about fixed 
central axes (like a top) by means of strings wrapped around them, with the
strings producing the same constant tangential force F on all three objects.

The three objects have the same mass and radius, and they arc initially stationary. 
Rank the objects according to (a) their angular momentum about their central axes 
and (b) their angular speed, greatest first, when the strings have been pulled for a 
certain time t.

Answer:

(a) All angular momenta will be the same, because the torque is the same in each 
case

(b) sphere, disk, hoop

47Copyright ©2018 John Wiley & Sons, Inc

11-8 Conservation of Angular 
Momentum (1 of 7)

Learning Objectives

11.25  When no external net torque acts on a system along 
a specified axis, apply the conservation of angular 
momentum to relate the initial angular momentum 
value along that axis to the value at a later instant.

48Copyright ©2018 John Wiley & Sons, Inc
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11-8 Conservation of Angular 
Momentum (2 of 7)

• Since we have a new version of Newton's second law, we 
also have a new conservation law:

𝐿 = a constant isolated system . Equation (11-32)

• The law of conservation of angular momentum states that, 
for an isolated system,

net initial angular momentum  = net final angular mome( ) ( ntum)

𝐿𝑖 = 𝐿𝑓 isolated system . Equation (11-33)

49Copyright ©2018 John Wiley & Sons, Inc

11-8 Conservation of Angular 
Momentum (3 of 7)

If the net external torque acting on a system is zero, the 

angular 𝐿 of the system remains constant, no matter what 
changes take place within the system.

• Since these are vector equations, they are equivalent to the three 
corresponding scalar equations

• This means we can separate axes and write:

If the component of the net external torque on a system along a 
certain axis is zero, then the component of the angular 
momentum of the system along that axis cannot change, no 
matter what changes take place within the system.

• If the distribution of mass changes with no external torque, we have:

𝐼𝑖𝜔𝑓 = 𝐼𝑓𝜔𝑓 . Equation (11-34)

50Copyright ©2018 John Wiley & Sons, Inc
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11-8 Conservation of Angular 
Momentum (4 of 7)

Example Angular momentum 
conservation

• An ice skater is spinning with 
both arms and a leg outstretched.  
She pulls her arms and leg inward 
and her spinning motion changes 
dramatically.

51Copyright ©2018 John Wiley & Sons, Inc

11-8 Conservation of Angular 
Momentum (4 of 7)

Example Angular momentum 
conservation

• A springboard diver: rotational 
speed is controlled by tucking 
her arms and legs in, which 
reduces rotational inertia and 
increases rotational speed

52Copyright ©2018 John Wiley & Sons, Inc

Figure 11-17
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11-8 Conservation of Angular 
Momentum (4 of 7)

Example Angular momentum conservation

• A long jumper: the angular momentum caused by the torque 
during the initial jump can be transferred to the rotation of 
the arms, by wind milling them, keeping the jumper upright

Figure 11-18

53Copyright ©2018 John Wiley & Sons, Inc

11-8 Conservation of Angular 
Momentum (5 of 7)

Checkpoint 7

A rhinoceros beetle rides the rim of a small disk that rotates like a 
merry-go-round. If the beetle crawls toward the center of the disk, 
do the following (each relative to the central axis) increase, 
decrease, or remain the same for the beetle-disk system: (a) 
rotational inertia, (b) angular momentum, and (c) angular speed?

Answer:

(a) decreases

(b) remains the same

(c) increases

54Copyright ©2018 John Wiley & Sons, Inc
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11-8 Conservation of Angular 
Momentum (6 of 7)

Example : A Satellite in an 
Elliptical Orbit

An artificial satellite is placed in an  
elliptical orbit about the earth.  Its 
point of closest approach is 8.37 ×
106 m from the center of the earth, 
and its point of greatest distance is  
25.1 × 106 m from the center of the 
earth.

The speed of the satellite at the 
perigee is 8450 m/s.  Find the speed 
at the apogee.

55Copyright ©2018 John Wiley & Sons, Inc

11-8 Conservation of Angular 
Momentum (7 of 7)

Example : A Satellite in an 
Elliptical Orbit

Angular Momentum is conserved
𝐼𝐴𝜔𝐴 = 𝐼𝑃𝜔𝑃

where,

𝐼 = 𝑀𝑟2 and 𝜔 =
𝑣

𝑟
Thus,

𝑚𝑟𝐴
2
𝑣𝐴
𝑟𝐴

= 𝑚𝑟𝑃
2
𝑣𝑃
𝑟𝑃

yielding,

56Copyright ©2018 John Wiley & Sons, Inc

𝑣𝐴 =
𝑟𝑃𝑣𝑃
𝑟𝐴

=
8.37 × 106 m 8450 Τm s

25.1 × 106 m
= 2820 Τm s
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11-9 Precession of a Gyroscope (1 of 7)

Learning Objectives

11.26  Identify that the gravitational force acting on a spinning 
gyroscope causes the spin angular momentum vector (and 
thus the gyroscope) to rotate about the vertical axis in a 
motion called precession.

11.27  Calculate the precession rate of a gyroscope.

11.28  Identify that a gyroscope's precession rate is independent of 
the gyroscope's mass.

57Copyright ©2018 John Wiley & Sons, Inc

11-9 Precession of a Gyroscope (2 of 7)

58Copyright ©2018 John Wiley & Sons, Inc
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11-9 Precession of a 
Gyroscope (3 of 7)

• A nonspinning gyroscope, as 
attached in 11-22 (a), falls

• A spinning gyroscope (b) instead 
rotates around a vertical axis

• This rotation is called precession

Figure 11-22

59Copyright ©2018 John Wiley & Sons, Inc

11-9 Precession of a Gyroscope (4 of 7)

• The angular momentum of a 
(rapidly spinning) gyroscope is:

𝐿 = 𝐼𝜔, Equation (11-43)

• The torque can only change 
the direction of L, not its 
magnitude, because of (11-43)

𝑑𝐿 = Ԧ𝜏𝑑𝑡. Equation (11-44)

• The only way its direction can 
change along the direction of the 
torque without its magnitude 
changing is if it rotates around the 
central axis.

60Copyright ©2018 John Wiley & Sons, Inc
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11-9 Precession of a Gyroscope (5 of 7)

• The torque is given by the weight, 
thus,

𝑑𝐿 = 𝜏 𝑑𝑡 = 𝑀𝑔𝑟 𝑑𝑡

• As 𝐿 changes by an incremental 
amount in an incremental time 

interval 𝑑𝑡, the shaft and 𝐿 precess
around the 𝑧 axis through 
incremental angle 𝑑𝜙.

• Hence,

𝑑𝜙 =
𝑑𝐿

𝐿
=
𝑀𝑔𝑟 𝑑𝑡

𝐼𝜔
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11-9 Precession of a Gyroscope (6 of 7)

• This is called precession rate, is 
given by:

Ω =
𝑀𝑔𝑟

𝐼𝜔
Equation (11-46)

• True for a sufficiently rapid spin rate

• Independent of mass, (I is proportional to M) but does 
depend on g

• Valid for a gyroscope at an angle to the horizontal as well (a 
top for instance)
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11-9 Precession of a 
Gyroscope (7 of 7)

Gyro Compass
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11 Summary (1 of 3)

Rolling Bodies

comv R= Equation (11-2)

2 2

com com

1 1
.

2 2
K I Mv= + Equation (11-5)

coma R= Equation (11-6)

Torque as a Vector

• Direction given by the right-hand rule

r F =  Equation (11-14)
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11 Summary (2 of 3)

Angular Momentum of a Particle

( )r p m r v=  =  Equation (11-18)

Newton's Second Law in Angular Form

net

d

dt
 = Equation (11-23)

Angular Momentum of a System of Particles

1 2 3

1

n

n i

i

L
=

= + + + + = Equation (11-26)

net

d L

dt
 = Equation (11-29)
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11 Summary (3 of 3)

Angular Momentum of a Rigid Body

L I= Equation (11-31)

Conservation of Angular Momentum

= a constantL Equation (11-32)

=i fL L Equation (11-33)

Precession of a Gyroscope

Mgr

I
 = Equation (11-46)
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