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[
Chapter 11

Rolling, Torque, and Angular Momentum

1
]
11-1 Rolling as Translation and Rotation
Combined ( of 6)

Learning Objectives

11.01 Identify that smooth rolling can be considered as a
combination of pure translation and pure rotation

11.02 Apply the relationship between the center-of-mass
speed and the angular speed of a body in smooth rolling

Richard Megna/Fundamental Photographs
Figure 11-2
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11-1 Rolling as Translation and Rotation
Combined 2 of 6)

cycloid

flippingphysics.com
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11-1 Rolling as Translation and Rotation
Combined 3 of 6)

* We consider only objects that roll smoothly (no slip)

 The center of mass (com) of the object moves in a straight
line parallel to the surface

* The object rotates around the com as it moves
 The rotational motion is defined by: /"

S = 6R, Equation (11-1) Oolcom

Vcom = WR Equation (11-2)

Figure 11-3
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11-1 Rolling as Translation and Rotation
Combined @ of 6)

(@) Pure rotation -+ (b) Pure translation — (¢) Rolling motion
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Figure 11-4

* The figure shows how the velocities of translation and
rotation combine at different points on the wheel

Copyright ©2018 John Wiley & Sons, Inc

11-1 Rolling as Translation and Rotation
Combined ( of 6)

olling Without Slipping

flippingphysics.com

 The figure shows how the velocities of translation and
rotation combine at different points on the wheel
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11-1 Rolling as Translation and Rotation
Combined  of 6)

Checkpoint 1

The roar wheel on a clown's bicycle has twice the radius
of the from wheel, (a) When the bicycle is moving, is the
linear speed at the very top of the rear wheel greater than,
less than, or the same as that of the very top of the front
wheel? (b) Is the angular speed of the rear wheel greater
than, less than, or the same as that of the front wheel?

Answer:
(a) the same
(b) less than

Copyright ©2018 John Wiley & Sons, Inc

11-2 Forces and Kinetic Energy of
Rolling @ of12)

Learning Objectives

11.03 Calculate the kinetic energy of a body in smooth rolling
as the sum of the translational kinetic energy of the
center of mass and the rotational kinetic energy around
the center of mass.

11.04 Apply the relationship between the work done on a
smoothly rolling object and its kinetic energy change.

11.05 For smooth rolling (and thus no sliding), conserve
mechanical energy to relate initial energy values to the
values at a later point.

Copyright ©2018 John Wiley & Sons, Inc
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11-2 Forces and Kinetic Energy of
Rolling @ of12)

11.06 Draw a free-body diagram of an accelerating body that
Is smoothly rolling on a horizontal surface or up or
down on a ramp.

11.07 Apply the relationship between the center-of-mass
acceleration and the angular acceleration.

11.08 For smooth rolling up or down a ramp, apply the
relationship between the object’s acceleration, its
rotational inertia, and the angle of the ramp.

Copyright ©2018 John Wiley & Sons, Inc 9

11-2 Forces and Kinetic Energy of
Rolling of12)
« Combine translational and rotational kinetic energy:

1
K= E Icoma)z + E M'Ugom. Equation (11-5)

Arrolling object has two types of kinetic energy: a rotational
kinetic energy (% Icomwz) due to its rotation about its center of

mass and a translational kinetic energy (% Mvéom)
due to translation of its center of mass.
 |f a wheel accelerates,

Acom — aR Equation (11-6)
its angular speed changes Figure 11-7 7
» A force must act to prevent slip R R T T

T —
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11-2 Forces and Kinetic Energy of
Rolling @ of 12)

« If slip occurs, then the motion is not smooth rolling!

 For smooth rolling
down a ramp:

1. The gravitational
force is vertically

Forces Fysin@and fy 7 sin o
g s Fy
down determine the linear

Forces Fyy and Fy cos @
merely balance.

The torque due to @
determines the

i _x angularacceleration
around the com.

acceleration down

2. The normal force is e ramp.
perpendicular to the
ramp

3. The force of friction s
points up the slope Figure 11-8

Copyright ©2018 John Wiley & Sons, Inc 1
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11-2 Forces and Kinetic Energy of

Rolling (5 of 12)

* Write the Newton’s transl. equation of motion along the ramp
fs —Mgsinf = Ma.om

* The only force that 3
creates a torque on the
wheel is the (static)

Forces .EN and ,Eg cos @
merely balance.

frICtlonaI force Forcesv/?g sin 9'and fa Fysin 6 The torque due to @

determine the linear determines the
f_;R = Icom a acceleration down = . _x angular acceleration
the ramp. around the com.
 The angular
acceleration a >0 | \zos
(counterclockwise), thus A
. com,x Copyright © 2014 John Wikey & Sons, Inc. All ights reserved.
we substitute Figure 11.8
Copyright ©2018 John Wiley & Sons, Inc 12
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11-2 Forces and Kinetic Energy of
Rolling (6 of 12)

* Substituting a with its a.on, , counterpart, yield
_ Icoma _ Acom,x

fs‘ - R - _IcomT

 Equate this with the
translational equation

Forces Fyy and Fy cos @
merely balance.

f:s‘ - Mg Sin 9 Forces f?g sin 6 and E li,\in 0 The torque due to @
— M a determine the linear determines the
com acceleration down « angular acceleration
the ramp. around the com.

Copyright © 2014 John Wikey & Sons, Inc. All ights reserved.

Figure 11-8

Copyright ©2018 John Wiley & Sons, Inc 13
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11-2 Forces and Kinetic Energy of

Rolling (7 of 12)

* We can use this equation to find the acceleration of such
a body

gsinf
Acom,x = — T . Equation (11-10)
1+ com

MR?

* Note that the frictional force produces the rotation
» Without friction, the object will simply slide

Copyright ©2018 John Wiley & Sons, Inc 14

14

10/10/2021



11-2 Forces and Kinetic Energy of
Rolling (g of 12)

Checkpoint 1

Disks A and B are identical and roll across a floor with equal
speeds. Then disk A rolls up an incline, reaching a maximum
height h, and disk B moves up an incline that is identical
except that it is frictionless. Is the; maximum height reached
by disk B greater than, less than, or equal to h?

Answer:

The maximum height reached by B is less than that reached by A.
For A, all the kinetic energy becomes potential energy at h. Since
the ramp is frictionless for B, all of the rotational K stays rotational,
and only the translational kinetic energy becomes potential energy
at its maximum height.

Copyright ©2018 John Wiley & Sons, Inc 15
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11-2 Forces and Kinetic Energy of
Rolling (9 of 12)
Ball rolling down a ramp

A uniform ball, of mass M =6.00kg and radius R, rolls
smoothly from rest down a ramp at angle @ = 30.0° (Fig. 11-8).

(a) The ball descends a vertical height A = 1.20 m to reach the
bottom of the ramp. What 1s its speed at the bottom?

16

16
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11-2 Forces and Kinetic Energy of
Rolling @oof12)
Ball rolling down a ramp

Calculations: Thus, we conserve mechanical energy
K+ U= K, + U, (11-11)
Gleom®® + MV2) + 0 = 0 + Mgh, (11-12)
Doing so, substituting 2 MR? for I, (from Table 10-2f), and
then solving for v, give us
Veom = V ()gh = V/(F)(9.8 m/s?)(1.20 m)
=4.10 m/s. (Answer)

Note that the answer does not depend on M or R.

17
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11-2 Forces and Kinetic Energy of
Rolling @10f12)
Ball rolling down a ramp

(b) What are the magnitude and direction of the frictional
force on the ball as it rolls down the ramp?

Calculations: Before we can use Eq. 11-9, we need the
ball’s acceleration ag,, , from Eq. 11-10:
gsin @ gsinf@
Qcomx = = 2 T T L 2RI RE
1+ Ig/MR 1 +sMR /MR

(9.8 m/s?) sin 30.0°

5 = —3.50 m/s™.
1+5

Copyright ©2018 John Wiley & Sons, Inc 18
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11-2 Forces and Kinetic Energy of
Rolling @2 0f12)

Ball rolling down a ramp

(b) What are the magnitude and direction of the frictional
force on the ball as it rolls down the ramp?

Note that we needed neither mass M nor radius R to find
Acom - Thus, any size ball with any uniform mass would have
this smoothly rolling acceleration down a 30.0° ramp.

We can now solve Eq. 11-9 as

Aeom, x 2 2 eom, x 2
f; = —Imm RZ = —_;MR R2 = —_;Ma

= —%(6.00 kg)(—3.50 m/s*) = 8.40 N. (Answer)

com, x

Copyright ©2018 John Wiley & Sons, Inc 19
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]
11-3 The Y0-Y0 @of3)

Learning Objectives

11.09 Draw a free-body diagram of a yo-yo moving up or
down its string.

11.10 Identify that a yo-yo is effectively an object that rolls
smoothly up or down a ramp with an incline angle of
90°.

11.11 For a yo-yo moving up or down its string, apply the
relationship between the yo-yo's acceleration and its
rotational inertia.

11.12 Determine the tension in a yo-yo's string as the yo-yo
moves up or down the string.

Copyright ©2018 John Wiley & Sons, Inc 20
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]
11-3 The Y0-Y0 of3)

* As a yo-yo moves down a string, it loses
potential energy mgh but gains
rotational and translational kinetic
energy

* To find the linear acceleration of a yo-yo /
R

.IT
accelerating down its string: R
Ry

1. Rolls down a “ramp” of angle 90°
2. Rolls on an axle instead of its outer

surface ¥

. (a) (b)

3_ SlOWed by tenslon T rather than Copyright © 2014 John Wiley & Sons, Inc. All rights reserved

friction Figure 11-9

Copyright ©2018 John Wiley & Sons, Inc 21
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]
11-3 The Y0-Y0 @of3)

* Replacing the values in 11-10 leads us to:

acom = —+, Equation (11-13)
MR?
Example Calculate the acceleration of the yo-yo

2
T
* M = 150 grams, Ry = 3 mm, Icom = — = 3 x 107° kg m?
* Therefore

m
B 985 gam
Acom = 3x10-5 s2
1+ 015 x 00032

Copyright ©2018 John Wiley & Sons, Inc 22
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11-4 Torque Revisited (1 of7)

Learning Objectives
11.13 Identify that torque is a vector quantity.

11.14 ldentify that the point about which a torque is calculated

must always be specified.
11.15 Calculate the torque due to a force on a particle by

taking the cross product of the particle’s position vector

and the force vector, in either unit-vector notation or
magnitude-angle notation.

11.16 Use the right-hand rule for cross products to find the
direction of a torque vector.

Copyright ©2018 John Wiley & Sons, Inc
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(a) &
- Copyright © 2014 John Wiley & Sons, Inc. All rights reserved. Fi gure 11-10

11-4 Torque Revisited ot 7)

* Previously, torque was defined only for a rotating body and

a fixed axis

* Now we redefine it for an individual particle that moves
along any path relative to a fixed point

» The path need not be a circle; torque is now a vector
« Direction determined with right-hand-rule

Cross rinto F.
Torgge tisin thq_e Feikh L .
positive z direction. _F(redrawn, with

y o) tail at origin) 5 5

0, 5

7 2\
% F <¢ F )
Line of action of F

) « (0 ¥

Copyright ©2018 John Wiley & Sons, Inc
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11-4 Torque Revisited 3of7)

» The general equation for torque is:
T=7xF Equation (11-14)
» We can also write the magnitude as:

T=rFsing, Equation (11-15)

* Or, using the perpendicular component of force or the
moment arm of F:

T = rFJ_, Equation (11-16)

T=r1,F, Equation (11-17)

Copyright ©2018 John Wiley & Sons, Inc 25
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11-4 Torque Revisited ot 7)

Checkpoint 3

The position vector 1 of a particle points along the

positive direction of a z axis. If the torque on the particle is (a)
zero, (b) in; the negative direction of x, and (c) in the negative
direction of y, in what direction is the force causing the
torque?

Answer:

(a) along the z direction
(b) along the +y direction
(c) along the +x direction

Copyright ©2018 John Wiley & Sons, Inc 26
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]
11-4 Torgue Revisited of7)

Example Calculating net torque:

Torque on a particle due to a force

In Fig. 11-11a, three forces, each of magnitude 2.0 N, act on
a particle. The particle is in the xz plane at point A given by
position vector 7, where r = 3.0 m and @ = 30°. What is the
torque, about the origin O, due to each force?

Copyright ©2018 John Wiley & Sons, Inc 27
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11-4 Torque Revisited ¢ of7)

Example Calculating net torque: Figure 11-11

. *

Cross 7 into . Torque T,
is into the figure (negative y).
(a)

x

Cross ¥into F.
Torque T is out of
the figure (positive y).

£

==

I

=
W

x = L - x
" x‘ 3 Cross ?E‘{DE&- @ y :'heihree
/e / Torque T is / orques.
[ @ Lo 4 in the xz plane. < s ]
Copyright ©2018 John Wiley & Sons, Inc 28
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]
11-4 Torque Revisited (70t 7)

Example Calculating net torque:
Torque on a particle due to a force
7; = rF; sin ¢ = (3.0 m)(2.0 N)(sin 150°) = 3.0 N-m,
7 = rF; sin ¢, = (3.0 m)(2.0 N)(sin 120°) = 5.2 N-m,
and 73 = rF; sin ¢; = (3.0 m)(2.0 N)(sin 90°)
=6.0N-m. (Answer)

Copyright ©2018 John Wiley & Sons, Inc 29
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11-5 Angular Momentum ( ofe)

Learning Objectives
11.17 Ildentify that angular momentum is a vector quantity.

11.18 Identify that the fixed point about which an angular
momentum is calculated must always be specified.

11.19 Calculate the angular momentum of a particle by taking
the cross product of the particle's position vector and its
momentum vector, in either unit-vector notation or
magnitude-angle notation.

11.20 Use the right-hand rule for cross products to find the
direction of an angular momentum vector.

Copyright ©2018 John Wiley & Sons, Inc 30
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11-5 Angular Momentum L
(2 Of 6) i o — tail nl‘ori{gin) ;
. . ] i
* Here we investigate the angular N ot
counterpart to linear momentum <5
e We write:

(a)

£ =7xp=m(7xv) Equation (11-18)

Note that the particle need not rotate
around O to have angular
momentum around it

Extension of i;

The unit of angular momentum is
kg m?/s, or Js »

Fi gure 11-12  copyright 2014 John Wiley & Sons, Inc. Allrights reserved.
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11-5 Angular Momentum S

(2 of 6) . M_Z’tii‘l‘;{‘(‘,‘.?i‘,;i‘.‘,‘;‘ _\.

* To find the direction of angular
momentum, use the right-hand rule to
relate r and v to the result

+ To find the magnitude, use the equation
for the magnitude of a cross product:

£ = rmv sing, Equation (11-19) '
 The unit of angular momentum is 9
¢ =7rp, =rmv;  Equation (11-20)

Extension of ;;

£ =7r,p=r mv, Equation(11-21)
(b)

Fi gure 11-12  copyright©2014 John Wiley & Sons, Inc. All rights reserved.
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11-5 Angular Momentum (sof 6)

* Angular momentum has meaning only with respect to a
specified origin

* It is always perpendicular to the plane formed by the
position and linear momentum vectors

Copyright ©2018 John Wiley & Sons, Inc 33
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11-5 Angular Momentum ofe)
Checkpoint 4

In part a of the figure, particles 1 and 2 move around point O in circles
with radii 2 m and 4 m. In part b, particles 3 and 4 travel along straight
lines at perpendicular distances of 4 m and 2 m from point O. Particle 5
moves directly away from O. All five particles have the same mass and
the same constant speed, (a) Rank the particles according to the
magnitudes of (heir angular momentum about point O, greatest first, (b)
Which particles have negative angular momentum about point O?
s

e Sl B it
e - h
Vs - N
/ Ve ~ \\
f / \
SO B Oo———— P —-
\ \ / ! 5
\ N s /
\ e S Tmmmmmmmeees — — ——
~ 2 s 4
~ e
S~e___~
(a) (b)
Copyright ©2018 John Wiley & Sons, Inc 34

34

10/10/2021

17



11-5 Angular Momentum (s of s)

d/——.-i___ — o G—
< 1 ~ 3
s \\
/ N
/ / \
: { Oe ) | 00 — — — — > —
\\ \\ 7 ’,: R
rd
\ G S mmmmmmmmome > — — —
o2, 4

Answer:
(@1&3,2&4,5
(b) 2 and 3 (assuming counterclockwise is positive)

Copyright ©2018 John Wiley & Sons, Inc 35
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11-6 Newton's Second Law in Angular
Form (1ofs)

Learning Objectives

11.21 Apply Newton's second law in angular form to
relate the torque acting on a particle to the resulting
rate of change of the particle's angular momentum,
all relative to a specified point.

Copyright ©2018 John Wiley & Sons, Inc 36
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11-6 Newton's Second Law in Angular
Form (2of6)

* We rewrite Newton's second law as:
. at . .
Tnet =, (single particle). Equation (11-23)

* The torque and the angular momentum must be defined with
respect to the same point (usually the origin)

The (vector) sum of all the torques acting on a particle is
equal to the time rate of change of the angular momentum of
that particle.

* Note the similarity to the linear form:

5 d
Fnet = d_IZ (single particle) Equation (11-22)

Copyright ©2018 John Wiley & Sons, Inc 37
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11-6 Newton's Second Law in Angular

Form @zofs)

Checkpoint 5 ~

The figure shows the position vector r of a particle at a certain
instant, and four choices for the direction of a force that is to
accelerate the particle. All four choices lie in the xy plane. (a) Rank
the choices according to the magnitude of the time rate of change

(%) they produce in the angular momentum of the particle about

point O, greatest first, (b) Which choice results in a negative rate of
change about O?

Answer:
(@) F3 F, F, & Fy

(b) F5 (assuming counter clockwise is
positive)

Copyright ©2018 John Wiley & Sons, Inc 38
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11-6 Newton's Second Law in Angular
Form (4 of )

Torque and the time derivative of angular momentum

Figure 11-14a shows a freeze-frame of a 0.500 kg particle
moving along a straight line with a position vector given by

7 = (=2.002 - )i + 5.00j,

with 7 in meters and ¢ in seconds, starting at r = 0. The posi-
tion vector points from the origin to the particle. In unit-vector
notation, find expressions for the angular momentum # of the
particle and the torque 7 acting on the particle, both with
respect to (or about) the origin. Justify their algebraic signs
in terms of the particle’s motion.

Copyright ©2018 John Wiley & Sons, Inc 39
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11-6 Newton's Second Law in Angular
Form (sofs)

Torque and the time derivative of angular momentum

y (m)

x (m)

(a)

Copyright ©2018 John Wiley & Sons, Inc 40
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11-6 Newton's Second Law in Angular
Form (s ofs)

Torque and the time derivative of angular momentum

— d 2 2
V= E((—Z.OU':!‘2 - 1 + 5.00))
= (—4.00f — 1.00)1,
Because 7 lacks any z component and because V lacks any y or
z component, the only nonzero term is
T x ¥V = —(-4.00f - 1.00)(5.00)k = (20.0¢ + 5.00)k m?/s.
d -
7 E(lo.{lr + 2.50)k kg - m%/s
= 10.0k kg - m%*s> = 10.0k N-m, (Answer)

Copyright ©2018 John Wiley & Sons, Inc 41
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]
11-7 Angular Momentum of a Rigid

Body @ of6)

Learning Objectives

11.22 For a system of particles, apply Newton's second law in
angular form to relate the net torque acting on the system to
the rate of the resulting change in the system's angular
momentum.

11.23 Apply the relationship between the angular momentum of a
rigid body rotating around a fixed axis and the body's
rotational inertia and angular speed around that axis.

11.24 1f two rigid bodies rotate about the same axis, calculate their
total angular momentum.

Copyright ©2018 John Wiley & Sons, Inc 42
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11-7 Angular Momentum of a Rigid
Body 206

» We sum the angular momenta of the particles to find the
angular momentum of a system of particles:
n

-

L= ?1 + ?2 + ?3 + -+ ?n = Z Z”i . Equation (11-26)
i=1

 The rate of change of the net angular momentum is:

dL )
E = Zl Tnet,i - Equation (11-28)
1=
* In other words, the net torque is defined by this change:
dL
Tnet = It (system of particles) Equation (11-29)

Copyright ©2018 John Wiley & Sons, Inc 43
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11-7 Angular Momentum of a Rigid
Body Gof6)

The net external torque Tpet acting on a system of particles is
equal to the time rate of change of the system'’s total angular

momentum L

Copyright ©2018 John Wiley & Sons, Inc 44
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]
11-7 Angular Momentum of a ngld

Body @ ofe) <k
* Note that the torque and angular momentum |
must be measured relative to the same origin |

« If the center of mass is accelerating, then Gz <]
that origin must be the center of mass '

» We can find the angular momentum of a
rigid body as

Z i, = z Am;v;r;,  Equation (11-30) “

z Am;(wry )y = Z Aml il

* The sum is the rotational inertia I of the body

Copyright ©2018 John Wiley & Sons, Inc » 45
D,
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]
11-7 Angular Momentum of a Rigid

Body @ of6)

 Therefore, this simplifies to:
L =Iw (rigid body, fixed axis).

Table 11-1 More Corresponding Variables and Relations for Translational and
Rotational Motion?

Translational Translational Rotational Rotational

Equation (11-31)

Force Torque ( rx F)
Linear momentum 5 Angular momentum i(=rxp)
Linear momentum® “p(: > ) Angular momentum?® E(z > )
Linear momentum® 5(: M me) Angular momentum® L=lw
Newton's second law® = dp Newton's second law® ~ 4qdL
net = dt Tnet :H
Conservation law? p = a constant Conservation law? L =a constant
Copyright ©2018 John Wiley & Sons, Inc 46
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11-7 Angular Momentum of a Rigid
Body o)

Checkpoint 6

In the figure, a disk, a hoop, and a solid sphere are made to spin about fixed
central axes (like a top) by means of strings wrapped around them, with the
strings producing the same constant tangential force F on all three objects.

The three objects have the same mass and radius, and they arc initially stationary.
Rank the objects according to (a) their angular momentum about their central axes
and (b) their angular speed, greatest first, when the strings have been pulled for a

certain time t.

Answer: F F I

(a) All angular momenta will be the same, because the torque is the same in each
case

(b) sphere, disk, hoop

47
11-8 Conservation of Angular
Momentum (1 of 7)
Learning Objectives
11.25 When no external net torque acts on a system along
a specified axis, apply the conservation of angular
momentum to relate the initial angular momentum
value along that axis to the value at a later instant.
48
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11-8 Conservation of Angular
Momentum (2 of 7)

* Since we have a new version of Newton's second law, we
also have a new conservation law:

L = a constant (isolated system). Equation (11-32)

» The law of conservation of angular momentum states that,
for an isolated system,

(net initial angular momentum) = (net final angular momentum)

Zi = Zf (isolated system). Equation (11-33)

Copyright ©2018 John Wiley & Sons, Inc 49
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11-8 Conservation of Angular
Momentum (3 of 7)

If the net external torque acting on a system is zero, the

angular L of the system remains constant, no matter what

changes take place within the system.

* Since these are vector equations, they are equivalent to the three
corresponding scalar equations

» This means we can separate axes and write:

If the component of the net external torque on a system along a

certain axis is zero, then the component of the angular

momentum of the system along that axis cannot change, no

matter what changes take place within the system.

« If the distribution of mass changes with no external torque, we have:

liws = Irwy. Equation (11-34)

Copyright ©2018 John Wiley & Sons, Inc 50
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11-8 Conservation of Angular
Momentum  of 7)

Example Angular momentum % e
conservation & o
* An ice skater is spinning with 7 [ ’y
! P \
both arms and a leg outstretched. <>
She pulls her arms and leg inward &[>
and her spinning motion changes /< _L_> <d | B
dramatically. o k
-— Ay
(a) (b)
Copyright ©2018 John Wiley & Sons, Inc 51
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11-8 Conservation of Angular
Momentum ( of 7)

Example Angular momentum o /O ﬁ

conservation d AN ﬁ\@

« A springboard diver: rotational ) 4 i (Tt>
speed is controlled by tucking { B
her arms and legs in, which M \+%
reduces rotational inertia and P S
increases rotational speed Hordn A oI [\ 'y

is fixed but she can still

control her spin rate. il
(?

A

P\

Figure 11-17 )\

Copyright ©2018 John Wiley & Sons, Inc 52
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11-8 Conservation of Angular
Momentum  of 7)

Example Angular momentum conservation

* Along jumper: the angular momentum caused by the torque
during the initial jump can be transferred to the rotation of
the arms, by wind milling them, keeping the jumper upright

£ £ R g
) ‘. & = ., .- - .
- ¥ ¥ = - 2
Q &
. >
A §
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Figure 11-18

Copyright ©2018 John Wiley & Sons, Inc 53
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11-8 Conservation of Angular
Momentum (s of 7)

Checkpoint 7

A rhinoceros beetle rides the rim of a small disk that rotates like a
merry-go-round. If the beetle crawls toward the center of the disk,
do the following (each relative to the central axis) increase,
decrease, or remain the same for the beetle-disk system: (a)
rotational inertia, (b) angular momentum, and (c) angular speed?

Answer:

(a) decreases

(b) remains the same
(c) increases

Copyright ©2018 John Wiley & Sons, Inc 54
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11-8 Conservation of Angular

Momentum (6 of 7)

Example : A Satellite in an
Elliptical Orbit

An artificial satellite is placed in an -
elliptical orbit about the earth. Its 7
point of closest approach is 8.37 x :

10 m from the center of the earth, Apogeel __________ Y

and its point of greatest distance is Va
25.1 x 10 m from the center of the
earth.

“Vl)

Earth \\
a \

)

i)
/

The speed of the satellite at the
perigee is 8450 m/s. Find the speed
at the apogee.

Perigee
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11-8 Conservation of Angular

Momentum (7 of 7)
Example : A Satellite in an

Elliptical Orbit )
Angular Momentum is conserved P
IAwA = Ip(i)p /‘/
Where, Apogeel\ ______
[=Mr? and w=-— AN
r N
Thus, ol
Va Up :
mri—=mrj— | A
T4 p
yielding,

rpUp _ (8.37 x 10°m)(8450 m/s)
Ty 25.1 X 106 m

Vg =

=2820m/s

Perigee
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11-9 Precession of a Gyroscope (1 of7)

Learning Objectives

11.26 Identify that the gravitational force acting on a spinning
gyroscope causes the spin angular momentum vector (and
thus the gyroscope) to rotate about the vertical axis in a
motion called precession.

11.27 Calculate the precession rate of a gyroscope.

11.28 Identify that a gyroscope's precession rate is independent of
the gyroscope's mass.
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11-9 Precession of a Gyroscope of7)

gfycat.com
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11-9 Precession of a

Gyroscope (s of7)

« A nonspinning gyroscope, as
attached in 11-22 (a), falls

« Aspinning gyroscope (b) instead
rotates around a vertical axis

* This rotation is called precession

ﬂ.

Figure 11-22 * dt

(e) 59
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11-9 Precession of a Gyroscope @ of7)

* The angular momentum of a
(rapidly spinning) gyroscope is:
L=Ilw, Equation (11-43)
* The torque can only change

the direction of L, not its
magnitude, because of (11-43)
dL = 2dt.  Equation (11-44) —
+ The only way its direction can taken by head
change along the direction of the
torque without its magnitude
changing is if it rotates around the
. centralaxis. i
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60

10/10/2021

30



11-9 Precession of a Gyroscope of7)

» The torque is given by the weight,
thus,
dL =tdt = Mgrdt

« AsL changes by an incremental

amount in an incremental time

interval dt, the shaft and L precess
around the z axis through

Circular path

incremental angle d¢. wken byhead
ol Lvector
* Hence,
dL Mgrdt
dd) = — =
L lw

Copyright ©2018 John Wiley & Sons,
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11-9 Precession of a Gyroscope of7)

This is called precession rate, is

given by: Mgr

Q=—- Equation (11-46)
lw

True for a sufficiently rapid spin rate

Independent of mass, (I is proportional to M) but does
dependon g

Valid for a gyroscope at an angle to the horizontal as well (a
top for instance)
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11-9 Precession of a
Gyroscope (7of7)

Gyro Compass

Gyroscope Spin axis
frame ”

gfycat.com
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11 Summary ofs)
Rolling Bodies
V., =®R Equation (11-2)
K==1,,0"+=MV_ Equation (11-5)
a,m =R Equation (11-6)
Torque as a Vector
« Direction given by the right-hand rule
; = F X I_f Equation (11-14)
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11 Summary @ofs)

Angular Momentum of a Particle

€=Fx6=m(Fx0)

Newton's Second Law in Angular Form

- ds
Thet = ——

dt

Angular Momentum of a System of Particles

E=21+E2 +?3 +---+Zn =Z_éi

- dL

Tnet =——

i=1

Equation (11-18)

Equation (11-23)

Equation (11-26)

Equation (11-29)
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11 Summary @ofs)

Angular Momentum of a Rigid Body
L=lw
Conservation of Angular Momentum

L = a constant

Li =Ly
Precession of a Gyroscope
o= Mar
low

Equation (11-31)

Equation (11-32)

Equation (11-33)

Equation (11-46)
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