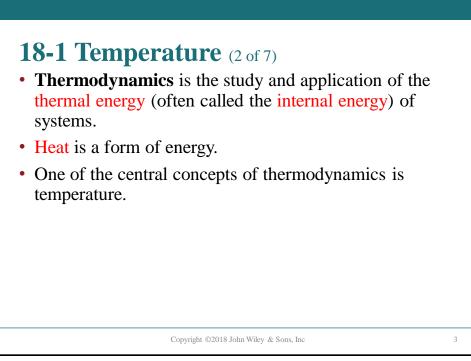
Fundamentals Physics

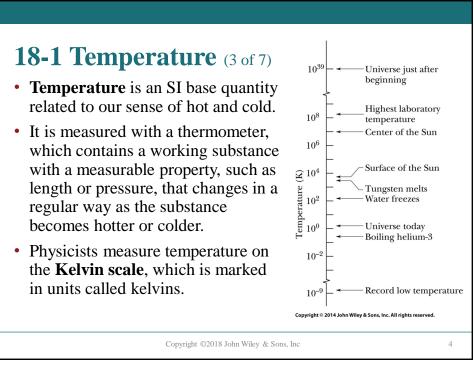
Eleventh Edition

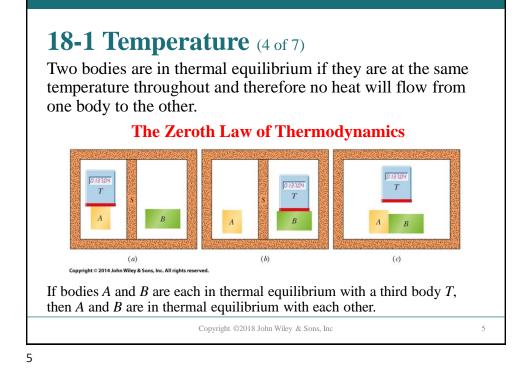
Halliday

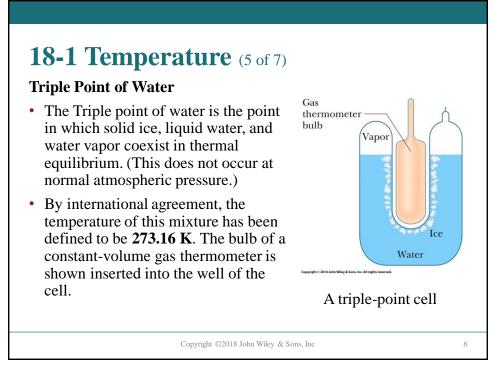
Chapter 18

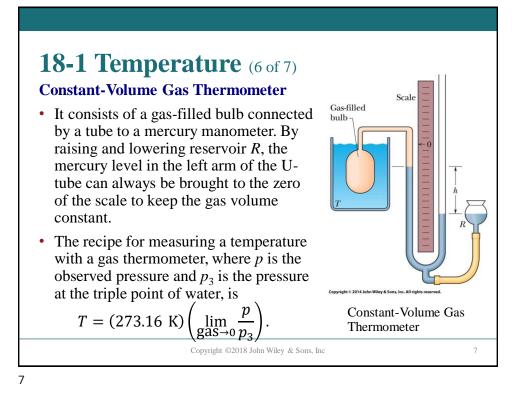
Temperature, Heat, and the First Law of Thermodynamics

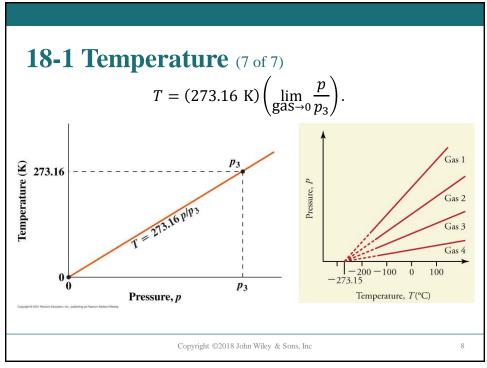

18-1 Temperature (1 of 7)

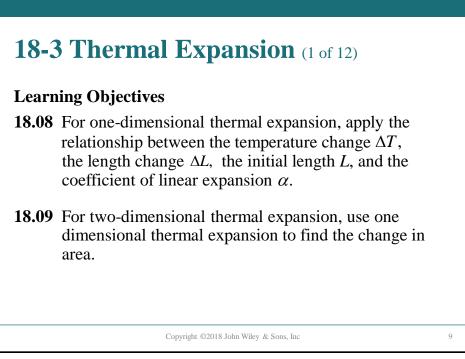

Learning Objectives

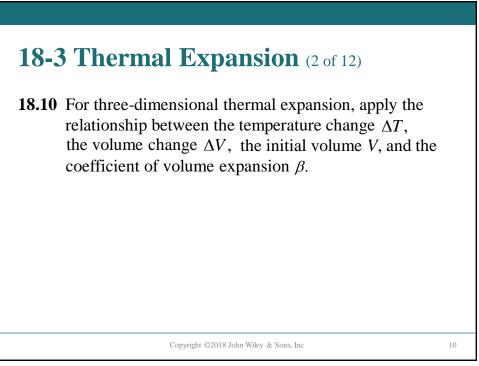

- **18.01** Identify the lowest temperature as 0 on the Kelvin scale (absolute zero).
- 18.02 Explain the zeroth law of thermodynamics.
- **18.03** Explain the conditions for the triple-point temperature.
- **18.04** Explain the conditions for measuring a temperature with a constant-volume gas thermometer.
- **18.05** For a constant-volume gas thermometer, relate the pressure and temperature of the gas in some given state to the pressure and temperature at the triple point.

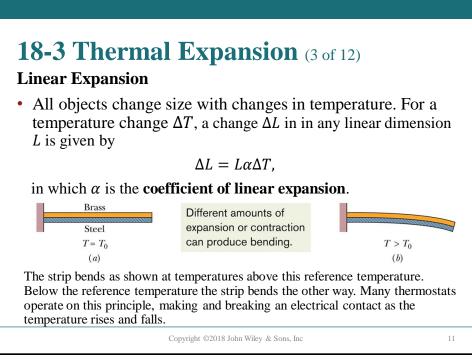

Copyright ©2018 John Wiley & Sons, Inc

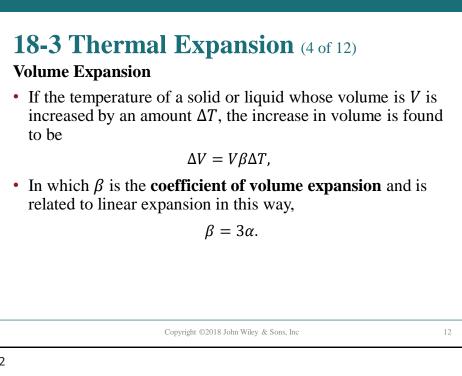

2

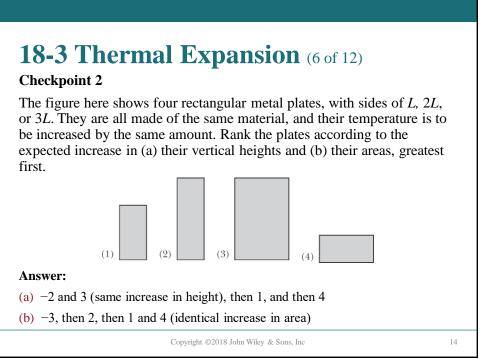


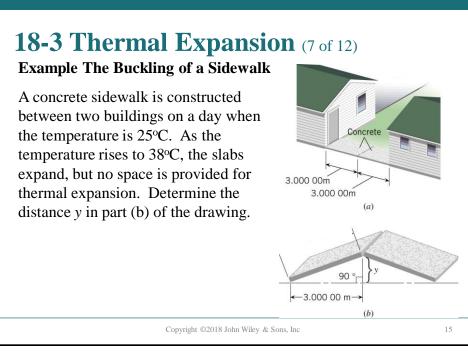


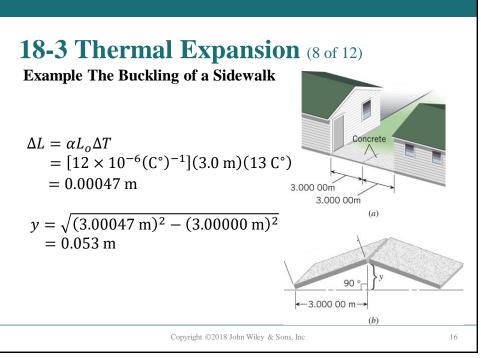




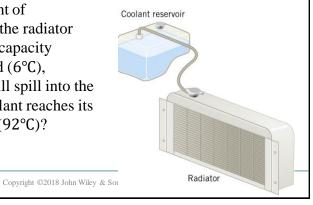


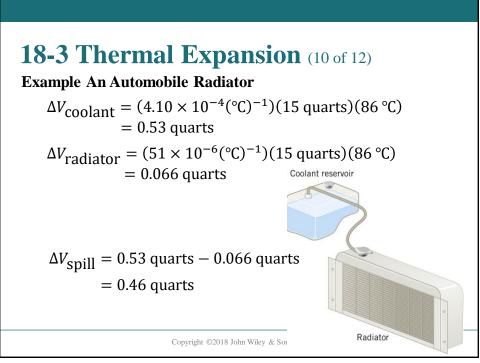






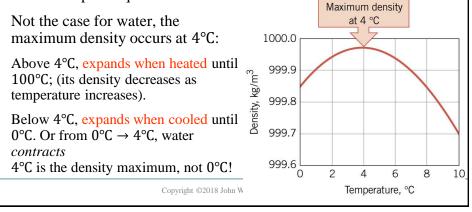
		ficient kpansion (C°) ⁻¹	
Substance	Linear (α)	Volume (β)	
Solids			
Aluminum	$23 imes 10^{-6}$	$69 imes 10^{-6}$	
Brass	$19 imes 10^{-6}$	57×10^{-6}	
Concrete	12×10^{-6}	$36 imes 10^{-6}$	
Copper	$17 imes 10^{-6}$	$51 imes 10^{-6}$	
Glass (common)	$8.5 imes10^{-6}$	$26 imes 10^{-6}$	
Glass (Pyrex)	$3.3 imes 10^{-6}$	$9.9 imes 10^{-6}$	
Gold	$14 imes 10^{-6}$	42×10^{-6}	
Iron or steel	$12 imes 10^{-6}$	$36 imes 10^{-6}$	
Lead	$29 imes 10^{-6}$	$87 imes 10^{-6}$	
Nickel	13×10^{-6}	$39 imes 10^{-6}$	
Quartz (fused)	$0.50 imes10^{-6}$	$1.5 imes 10^{-6}$	
Silver	$19 imes 10^{-6}$	$57 imes 10^{-6}$	
Liquids ^b			
Benzene	_	$1240 imes 10^{-6}$	
Carbon tetrachloride	—	1240×10^{-6}	
Ethyl alcohol	_	1120×10^{-6}	
Gasoline	_	$950 imes 10^{-6}$	
Mercury		$182 imes 10^{-6}$	
Methyl alcohol	_	$1200 imes 10^{-6}$	
Water		207×10^{-6}	

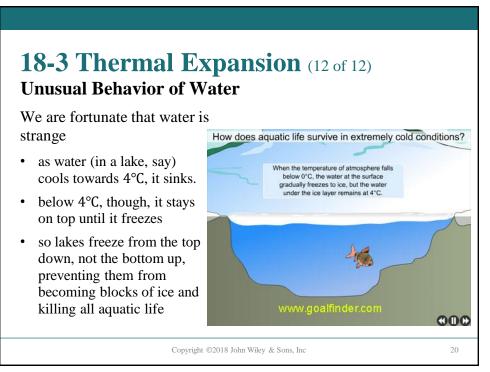


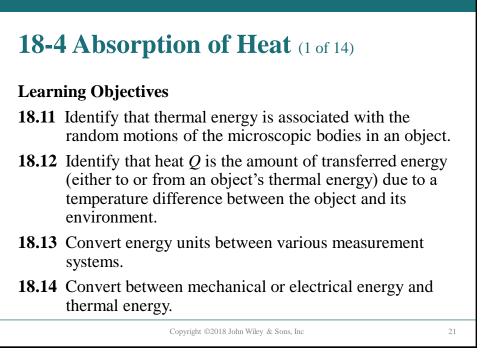

18-3 Thermal Expansion (9 of 12)

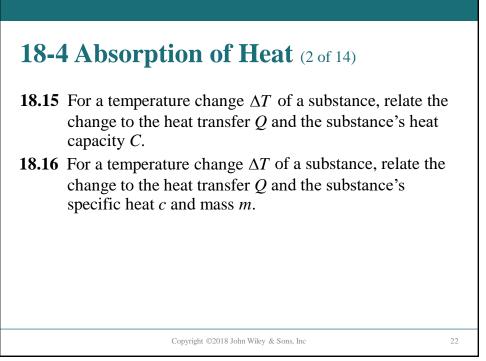
Example An Automobile Radiator

A small plastic container, called the coolant reservoir, catches the radiator fluid that overflows when an automobile engine becomes hot. The radiator is made of copper and the coolant has

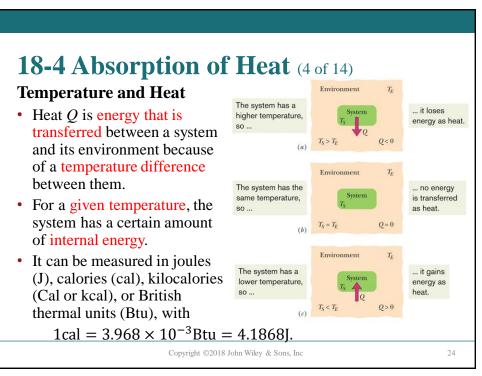

an expansion coefficient of $4.0 \times 10^{-4} (^{\circ}\text{C})^{-1}$. If the radiator is filled to its 15-quart capacity when the engine is cold (6°C), how much overflow will spill into the reservoir when the coolant reaches its operating temperature (92°C)?

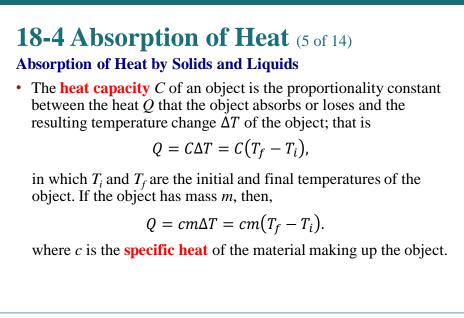





18-3 Thermal Expansion (11 of 12) **Unusual Behavior of Water**

For most substances, the solid form of the *substance* is more denser than the liquid form; thus, a block of pure solid *substance* will sink in a tub of pure liquid *substance*





- 18.17 Identify the three phases of matter.
- **18.18** For a phase change of a substance, relate the heat transfer Q, the heat of transformation L, and the amount of mass m transformed.
- **18.19** Identify that if a heat transfer Q takes a substance across a phase-change temperature, the transfer must be calculated in steps: (a) a temperature change to reach the phase-change temperature, (b) the phase change, and then (c) any temperature change that moves the substance away from the phase-change temperature.

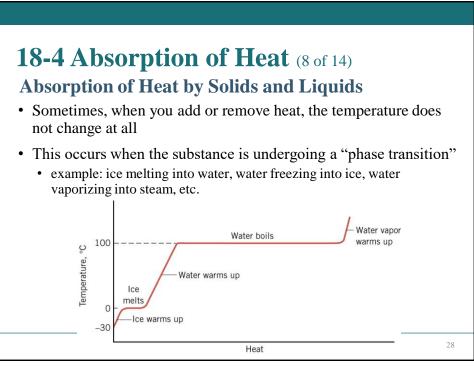
Copyright ©2018 John Wiley & Sons, Inc

Copyright ©2018 John Wiley & Sons, Inc

25

25

18-4 Absorption of Heat (6 of 14)

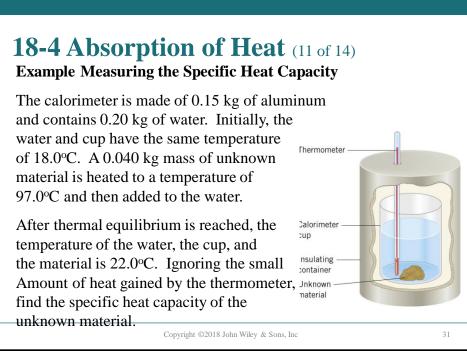

Checkpoint 3

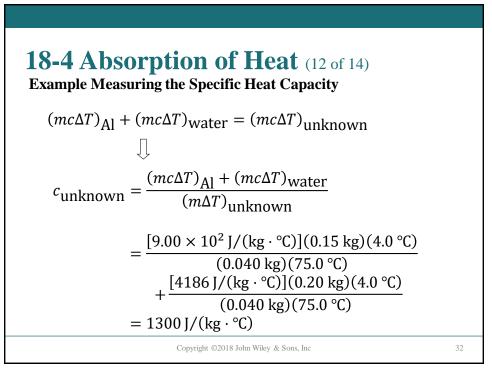
A certain amount of heat Q will warm 1 g of material A by 3 degree Celsius and 1 g of material B by 4 degree Celsius. Which material has the greater specific heat?

Answer:

Material *A* has the greater specific heat

18-4 Absorption of		Specific Heat		Molar Specific Heat
Heat (7 of 14)		cal	J	J
IICAL (/ OI 14)	Substance	g∙K	kg∙K	mol∙K
• When quantities are	Elemental Solids			
expressed in moles, specific	Lead	0.0305	128	26.5
heats must also involve moles	Tungsten	0.0321	134	24.8
	Silver	0.0564	236	25.5
(rather than a mass unit); they	Copper	0.0923	386	24.5
are then called molar specific	Aluminum	0.215	900	24.4
heats. Table shows the values	Other Solids Brass	0.092	380	
for some elemental solids	Granite	0.19	790	
(and consisting of a single	Glass	0.20	840	
(each consisting of a single	Ice (-10°C)	0.530	2220	
element) at room temperature.	Liquids			
_	Mercury	0.033	140	
	Ethyl alcohol	0.58	2430	
	Seawater	0.93	3900	
	Water	1.00	4187	


18-4 Absorption of Heat (9 of 14)


• The amount of energy per unit mass that must be transferred as heat when a sample completely undergoes a phase change is called the **heat of transformation** *L*. Thus, when a sample of mass *m* completely undergoes a phase change, the total energy transferred is

	Melting		Boiling		
Substance	Melting Point (K)	Heat of Fusion $L_F(kJ/kg)$	Boiling Point (K)	Heat of Vaporization L_V (kJ/kg	
Hydrogen	14.0	58.0	20.3	455	
Oxygen	54.8	13.9	90.2	213	
Mercury	234	11.4	630	296	
Water	273	333	373	2256	
Lead	601	23.2	2017	858	
Silver	1235	105	2323	2336	
Copper	1356	207	2868	4730	

29

18-4 Absorption of Heat (10 of 14) **Example A Hot Jogger** In which were a 65-kg jogger can generate 8.0x 10⁵J of heat. This heat is removed from the body by a variety of means, including the body's own temperature-regulating mechanisms. If the heat were not removed, how much would the body temperature is a 500 J(kg °C). $P = P = P = P = P = \frac{8.0 \times 10^5 J}{(5 \text{ kg})[3500 \text{ J}/(\text{kg} \cdot \text{C})]} = 3.5 \text{ °C}$

18-4 Absorption of Heat (13 of 14) Example Copper bowl and water

A 150 g copper bowl contains 220 g of water, both at 20.0°C. A very hot 300 g copper cylinder is dropped into the water, causing the water to boil, with 5.00 g being converted to steam. The final temperature of the system is 100°C. (a) How much heat was transferred to the water? (b) How much to the bowl? (c) What was the original temperature of the cylinder?

(a) The heat transferred to the water of mass m_w and steam of mass m_s is:

$$Q_{w} = c_{w}m_{w}\Delta T + L_{v}m_{s}$$

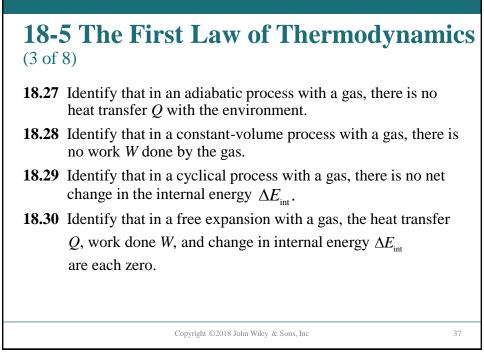
= $\left(1\frac{cal}{g^{\circ}C}\right)(220g)(100^{\circ}C - 20.0^{\circ}C)$
+ $(539 cal/g)(5.00 g) = 20.3 kcal$
Copyright ©2018 John Wiley & Sons, Inc

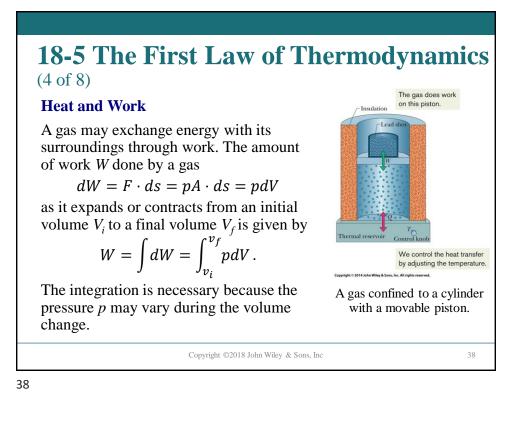
33

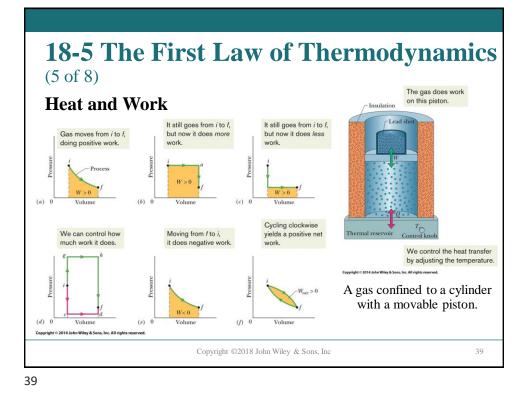
<section-header><equation-block><equation-block><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

18-5 The First Law of Thermodynamics (1 of 8)

Learning Objectives


- **18.20** If an enclosed gas expands or contracts, calculate the work *W* done by the gas by integrating the gas pressure with respect to the volume of the enclosure.
- **18.21** Identify the algebraic sign of work *W* associated with expansion and contraction of a gas.
- **18.22** Given a p-V graph of pressure versus volume for a process, identify the starting point (the initial state) and the final point (the final state) and calculate the work by using graphical integration.
- **18.23** On a p-V graph of pressure versus volume for a gas, identify the algebraic sign of the work associated with a right-going process and a left-going process.


Copyright ©2018 John Wiley & Sons, Inc


35

35

<text><list-item><list-item><list-item><list-item>

18-5 The First Law of Thermodynamics (6 of 8)

The First Law of Thermodynamics

The principle of conservation of energy for a thermodynamic process is expressed in the first law of thermodynamics, which may assume either of the forms:

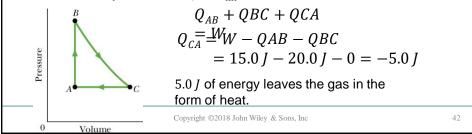
 $\Delta E_{\text{int}} = E_{\text{int, } f} - E_{\text{int, } i} = Q - W$ (first law).

Or, if the thermodynamic system undergoes only a differential change, we can write the first law as:

 $dE_{\text{int}} = dQ - dW$ (first law).

The internal energy E_{int} of a system tends to increase if energy is added as heat Q and tends to decrease if energy is lost as work W done by the system.

Copyright ©2018 John Wiley & Sons, Inc

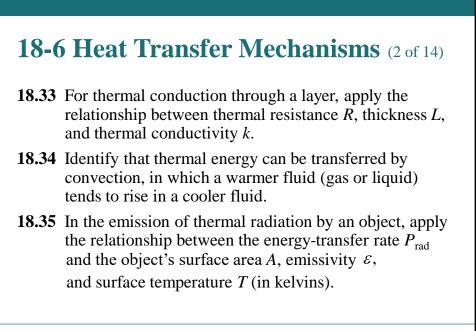

		The I
sequence	Restriction	Process
$M_{\rm nt} = -W$	Q = 0	Adiabatic
$d_{\rm tt} = Q$	W = 0	Constant volume
Q = W	$\Delta E_{\rm int} = 0$	Closed cycle
$_{nt} = 0$	Q = W = 0	Free expansion
	$\Delta E_{\rm int} = 0$	losed cycle

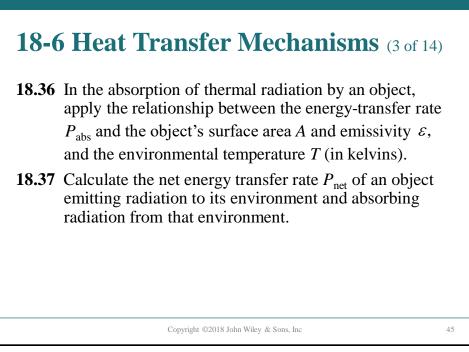
18-5 The First Law of Thermodynamics (8 of 8)

Example A Cycle

Gas within a chamber passes through the cycle shown in figure. Determine the net heat added to the system during process *CA* if the heat Q_{AB} added during process *AB* is 20.0 J, no heat is transferred during process *BC*, and the net work done during the cycle is 15.0 J.

Since the process is a complete cycle (beginning and ending in the same thermodynamic state), $\Delta E_{int} = 0$ and Q = W,

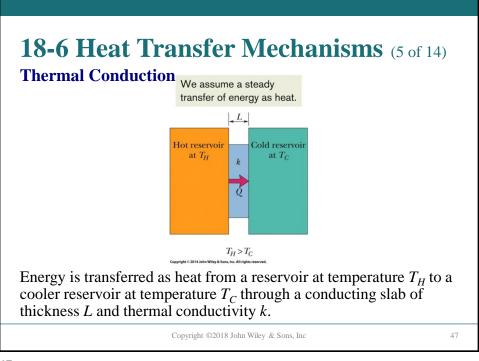


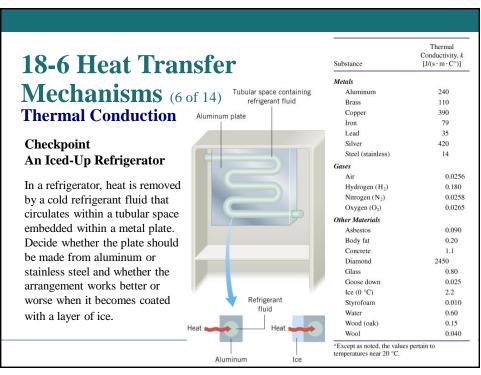

18-6 Heat Transfer Mechanisms (1 of 14) **Learning Objectives 18.31** For thermal conduction through a layer, apply the relationship between the energy-transfer rate *P*_{cond} and the layer's area *A*, thermal conductivity *k*, thickness *L*, and temperature difference Δ*T* (between its two sides). **18.32** For a composite slab (two or more layers) that has reached the steady state in which temperatures are no longer changing, identify that (by the conservation of energy) the rates of thermal conduction *P*_{cond} through the layers must be equal.

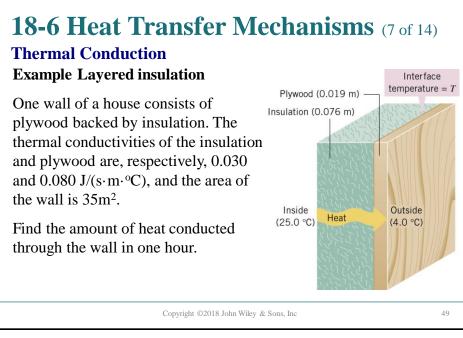
Copyright ©2018 John Wiley & Sons, Inc

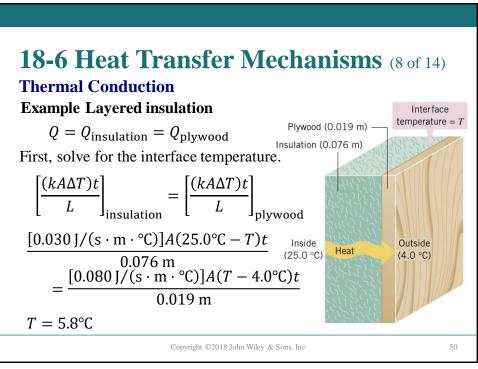
43

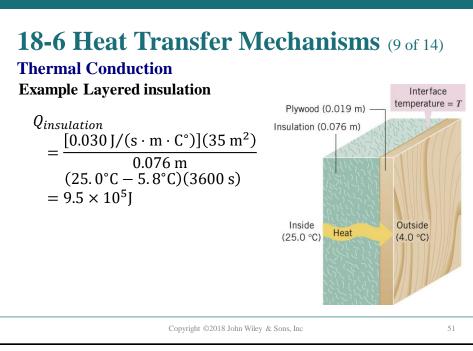
43

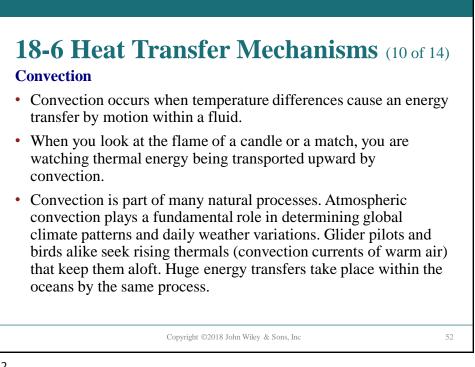

18-6 Heat Transfer Mechanisms (4 of 14) **Thermal Conduction**

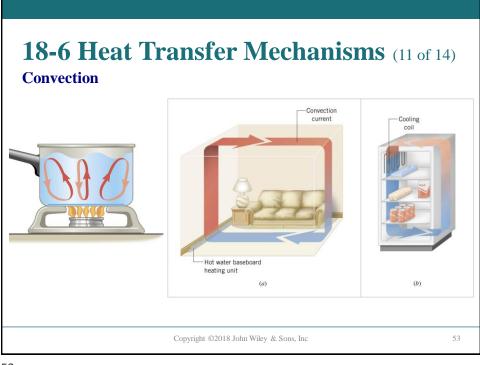

The rate P_{cond} at which energy is conducted through a slab for which one face is maintained at the higher temperature T_H and the other face is maintained at the lower temperature T_C is


$$P_{\text{cond}} = \frac{Q}{t} = kA \frac{T_H - T_C}{L}$$


Here each face of the slab has area A, the length of the slab (the distance between the faces) is L, and k is the thermal conductivity of the material.


Copyright ©2018 John Wiley & Sons, Inc





18-6 Heat Transfer Mechanisms (12 of 14)

Thermal Radiation

Radiation is an energy transfer via the emission of electromagnetic energy. The rate P_{rad} at which an object emits energy via thermal radiation is $P_{rad} = \sigma \varepsilon A T^4$.

Here σ (= 5.6704 × 10⁻⁸ W/m² · K⁴) is the Stefan– Boltzmann constant, ε is the emissivity of the object's surface, A is its surface area, and T is its surface temperature (in kelvins). The rate P_{abs} at which an object absorbs energy via thermal radiation from its environment, which is at the uniform temperature T_{env} (in kelvins), is

 $P_{\rm abs} = \sigma \varepsilon A T_{\rm env}^4$.

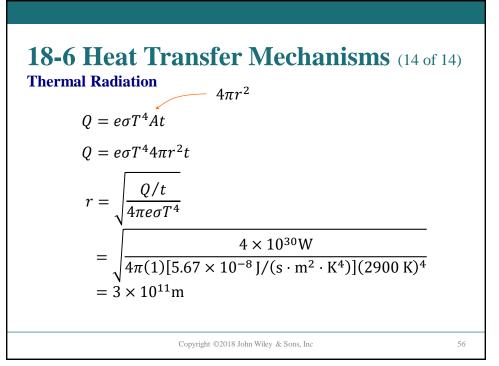
Copyright ©2018 John Wiley & Sons, Inc

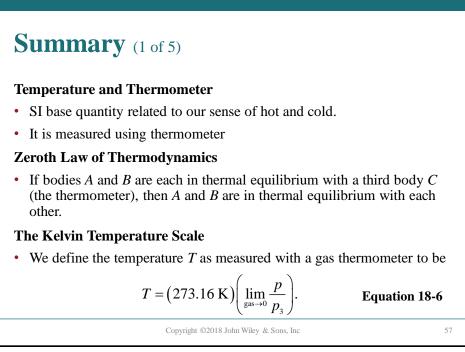
18-6 Heat Transfer Mechanisms (13 of 14) Thermal Radiation

Example A Supergiant Star

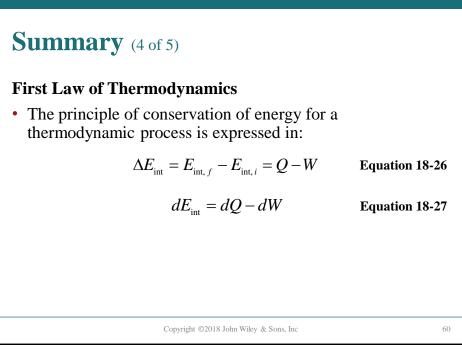
The supergiant star Betelgeuse has a surface temperature of about 2900 K and emits a power of approximately $4 \times 10^{30} W$.

Assuming that Betelgeuse is a perfect emitter and spherical,


find its radius.


Betelgeuse is a star located approximately 640 lightyears from the Earth. It is also known as Alpha Orionis (α Orionis / α Ori), and it is the second brightest star in the constellation Orion and the ninth brightest star in the night sky.

Copyright ©2018 John Wiley & Sons, Inc


55

Summary (2 of 5)				
Celsius and Fahrenheit Scale				
• The Celsius temperature scale is defined by				
$T_{\rm c} = T - 273.15^{\circ}$	Equation 18-7			
• The Fahrenheit temperature scale is defined by				
$T_{\rm F} = \frac{9}{5}T_{\rm C} + 32^{\circ}.$	Equation 18-8			
Thermal Expansion				
Linear Expansion				
$\Delta L = L\alpha \ \Delta T,$	Equation 18-9			
Copyright ©2018 John Wiley & Sons, Inc	58			

Summary (3 or	f 5)	
• Volume Expansion		
	$\Delta V = V\beta \ \Delta T.$	Equation 18-10
Heat Capacity and S	Specific Heat	
Heat Capacity:		
	$Q = C\left(T_{f} - T_{i}\right)$	Equation 18-13
• Specific Heat		
	$Q=cm\big(T_{f}-T_{i}\big),$	Equation 18-14
	Copyright ©2018 John Wiley & Sons, Inc	59

Summary (5 of 5)	
Application of First Law	
adiabatic processes:	$Q = 0, \Delta E_{\text{int}} = -W$
constant-volume processes	s: $W = 0, \Delta E_{int} = Q$
cyclical processes:	$\Delta E_{\rm int} = 0, Q = W$
free expansions:	$Q = W = \Delta E_{\rm int} = 0$
Conduction, Convection, Radiati	on
Conduction	
$P_{\rm cond} = \frac{Q}{t} = kA$	$\frac{T_{H} - T_{C}}{L}$ Equation 18-32
Radiation:	
$P_{\rm rad} = \sigma \varepsilon A T$	⁴ . Equation 18-39
Copyright ©2018 Johr	n Wiley & Sons, Inc 61

Copyright

Copyright © 2018 John Wiley & Sons, Inc.

All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Act without the express written permission of the copyright owner is unlawful. Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.